If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-9v2 + -9v + 6) + (4v2 + -2v + 1) + -1(3v2 + -8v + -8) = 0 Reorder the terms: (6 + -9v + -9v2) + (4v2 + -2v + 1) + -1(3v2 + -8v + -8) = 0 Remove parenthesis around (6 + -9v + -9v2) 6 + -9v + -9v2 + (4v2 + -2v + 1) + -1(3v2 + -8v + -8) = 0 Reorder the terms: 6 + -9v + -9v2 + (1 + -2v + 4v2) + -1(3v2 + -8v + -8) = 0 Remove parenthesis around (1 + -2v + 4v2) 6 + -9v + -9v2 + 1 + -2v + 4v2 + -1(3v2 + -8v + -8) = 0 Reorder the terms: 6 + -9v + -9v2 + 1 + -2v + 4v2 + -1(-8 + -8v + 3v2) = 0 6 + -9v + -9v2 + 1 + -2v + 4v2 + (-8 * -1 + -8v * -1 + 3v2 * -1) = 0 6 + -9v + -9v2 + 1 + -2v + 4v2 + (8 + 8v + -3v2) = 0 Reorder the terms: 6 + 1 + 8 + -9v + -2v + 8v + -9v2 + 4v2 + -3v2 = 0 Combine like terms: 6 + 1 = 7 7 + 8 + -9v + -2v + 8v + -9v2 + 4v2 + -3v2 = 0 Combine like terms: 7 + 8 = 15 15 + -9v + -2v + 8v + -9v2 + 4v2 + -3v2 = 0 Combine like terms: -9v + -2v = -11v 15 + -11v + 8v + -9v2 + 4v2 + -3v2 = 0 Combine like terms: -11v + 8v = -3v 15 + -3v + -9v2 + 4v2 + -3v2 = 0 Combine like terms: -9v2 + 4v2 = -5v2 15 + -3v + -5v2 + -3v2 = 0 Combine like terms: -5v2 + -3v2 = -8v2 15 + -3v + -8v2 = 0 Solving 15 + -3v + -8v2 = 0 Solving for variable 'v'. Begin completing the square. Divide all terms by -8 the coefficient of the squared term: Divide each side by '-8'. -1.875 + 0.375v + v2 = 0 Move the constant term to the right: Add '1.875' to each side of the equation. -1.875 + 0.375v + 1.875 + v2 = 0 + 1.875 Reorder the terms: -1.875 + 1.875 + 0.375v + v2 = 0 + 1.875 Combine like terms: -1.875 + 1.875 = 0.000 0.000 + 0.375v + v2 = 0 + 1.875 0.375v + v2 = 0 + 1.875 Combine like terms: 0 + 1.875 = 1.875 0.375v + v2 = 1.875 The v term is 0.375v. Take half its coefficient (0.1875). Square it (0.03515625) and add it to both sides. Add '0.03515625' to each side of the equation. 0.375v + 0.03515625 + v2 = 1.875 + 0.03515625 Reorder the terms: 0.03515625 + 0.375v + v2 = 1.875 + 0.03515625 Combine like terms: 1.875 + 0.03515625 = 1.91015625 0.03515625 + 0.375v + v2 = 1.91015625 Factor a perfect square on the left side: (v + 0.1875)(v + 0.1875) = 1.91015625 Calculate the square root of the right side: 1.382084024 Break this problem into two subproblems by setting (v + 0.1875) equal to 1.382084024 and -1.382084024.Subproblem 1
v + 0.1875 = 1.382084024 Simplifying v + 0.1875 = 1.382084024 Reorder the terms: 0.1875 + v = 1.382084024 Solving 0.1875 + v = 1.382084024 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.1875' to each side of the equation. 0.1875 + -0.1875 + v = 1.382084024 + -0.1875 Combine like terms: 0.1875 + -0.1875 = 0.0000 0.0000 + v = 1.382084024 + -0.1875 v = 1.382084024 + -0.1875 Combine like terms: 1.382084024 + -0.1875 = 1.194584024 v = 1.194584024 Simplifying v = 1.194584024Subproblem 2
v + 0.1875 = -1.382084024 Simplifying v + 0.1875 = -1.382084024 Reorder the terms: 0.1875 + v = -1.382084024 Solving 0.1875 + v = -1.382084024 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.1875' to each side of the equation. 0.1875 + -0.1875 + v = -1.382084024 + -0.1875 Combine like terms: 0.1875 + -0.1875 = 0.0000 0.0000 + v = -1.382084024 + -0.1875 v = -1.382084024 + -0.1875 Combine like terms: -1.382084024 + -0.1875 = -1.569584024 v = -1.569584024 Simplifying v = -1.569584024Solution
The solution to the problem is based on the solutions from the subproblems. v = {1.194584024, -1.569584024}
| 5x+4y-10=0 | | 5x+4y-10=10 | | 5x+4y-10=9 | | y-(-3)=5/7(x-5) | | 215+27.50x=2827.50 | | 24=4x-3 | | 5x+8=48-3x | | 4x/5-x=x/30-7/6 | | onethirdZ+6=9 | | 3m-g=am+5 | | 2x-15=29 | | d=60t | | lnX=9.9 | | 35x^3-x^3= | | -y-4x=-17 | | x-0.3x=646.14 | | 4x^2-23x+19=-6x+4 | | 2y-4x=-26 | | x-1500=1534.75-866.25 | | 6q+12=0 | | x+7y+42=0 | | C(Q)=1500-12.5Q+0.01Q | | 7x-92= | | (8+w)(4w+1)=0 | | -5=-2x-3 | | x*.13+x=253.39 | | 5x+3y+2x+4y= | | 1500+x-1534.75=866.25 | | 7x+15=2(x-5) | | 3(x+8)=2[x-(8-x)] | | 18x-22+50=180 | | x*.13+x=1775.87 |